Big Bang Nucleosynthesis with long-lived strongly interacting relic particles

Motohiko Kusakabe (Institute for Cosmic Ray Research, University of Tokyo, JSPS research fellow)

Collaborators T. Kajino (National Astronomical Observatory of Japan) T. Yoshida (University of Tokyo) G. J. Mathews (University of Notre Dame)

MK et al. Phys. Rev. D 80, 103501 (2009) [arXiv:0906.3516]

2009/11/9

Introduction Standard Big Bang Nucleosynthesis (SBBN)

Observations of light element abundances

Cosmological processes

>Nonthermal processes triggered by decay of exotic particles

(Ellis et al. 1985-, Reno & Seckel 1988, Dimopoulos et al. 1988-, Kawasaki et al. 1988-, Jedamzik 2000-)

Exotic nuclear reactions by bound states between negatively charged exotic particles and nuclides

(Pospelov 2007, Kohri & Takayama 2007, Kawasaki et al. 2007-, Hamaguchi et al. 2007, Jedamzik 2008-)

The WMAP Science Team

- Standard cosmological model includes
 Oark matter Oark energy (accelerated expansion)
 - →Need for beyond the standard model including dark matter (e.g. SUSY, extra-dimensions)
 - \rightarrow existences of exotic particles

ex) ✓ slepton(NLSP) (Feng et al. 2003) ✓ gluino(split SUSY) (Arkani-Hamed et al. 2005)

^{6,7}Li problems

⁶Li production by the radiative particle decay

➤Constraint from new ⁴He photodisintegration data

 \rightarrow factor of up to 3 uncertainty in ⁶Li production

MK et al. PRD 79, 123513 (2009)

BBN in existence of negatively charged particle X⁻

➢Resonant reaction through X-nucleus for nuclear excited state

Conclusion of our study

^{6,7}Li problems in Big Bang Nucleosynthesis

Model	⁶ Li problem solved?	⁷ Li problem solved?	Other nuclides with possible
			Signatures
Radiative decay	YES	NO	NO
Leptonic X ⁻	YES	YES	NO
Strong int. X ⁰	NO	NO	⁹ Be and/or ¹⁰ B
Early cosmic ray	YES	NO	⁹ Be and ^{10,11} B

MK, ApJ 681, 18 (2008)

Exotic particles could have affected the light element synthesis.
 Early cosmic ray nucleosynthesis also could have affected.
 Future observation of Be, B abundance is important to figure out the solutions to the Li problems.

Long-lived Heavy Colored Particles Y

Kang et al. JHEP 9, 86 (2008)

✓In the early universe, hypothetical colored particles Y are produced and annihilate

Υ₀

✓T<T_c~180MeV→Y particles get confined in hadrons (X)

✓X+X form the bound state → annihilate
 →final abundance

$$n_X \approx 10^{-8} n_b$$

Goal

Calculate the BBN in existence of heavy exotic strongly interacting particles

Derive a constraint on their abundance and lifetime

Check signatures on light element abundances

Model

1. Binding energies of nuclides and X systems

[Assumption]

>X (spin 0, charge 0, mass m_x >>1 GeV)

X interacts as strongly as nucleons

→Nuclear potential

1)nucleon+X: well reproducing the binding energy of n+p system

2) other nuclides: Woods-Saxon (V_0 =50MeV, a=0.6fm, R=< r_m^2 >^{1/2})

 $V_{\rm N}(r) = -\frac{V_0}{1 + \exp[(r - R)/a]}$

→Schrödinger equation→binding energies and wave functions r / x_0

$$\left[-\frac{\hbar^2}{2\mu}\nabla^2 + V(r) - E\right]\psi_{lm}(\mathbf{r}) = 0$$

X-nucleus

nuclide A

Binding energies $\sim O(10 \text{MeV}) \rightarrow Xs$ capture nuclei early in BBN epoch!

2. Nuclear reaction rates for X-nuclei

>Binding energies of X-nuclei \rightarrow Q-values

- \succ Estimation of nuclear reaction and β -decay rates for X-nuclei
 - ✓ adopting measured cross section
 - ✓ correcting for Q-value and mass numbers of reactant particles

Parameter search

 $\checkmark Calculation$ including the decay of X^0

Contours for observational constraints on primordial abundances

A solution for ⁶Li or ⁷Li problems are not found
 X⁰ abundance is constrained from observation of ⁷Li, B, ⁹Be

Summary

We study the effect of long-lived strongly interacting particles (X⁰) on BBN

✓ X⁰ is assumed to interact as strongly as a nucleon
 ✓ We calculate BBN including such particle dynamically

[Result]

➢BBN in existence of X⁰

- $\checkmark T_9 \sim 5$ X⁰ captures a nucleon
- ✓T₉~1 D forms → heavy X-nuclei are produced through D-capture

✓X-nuclei are produced at relatively high temperature
 →Nuclear reactions operate efficiently → heavy X-nuclei

Constraints on the lifetime and abundance of X⁰ are derived
→ $\tau_X \leq 200s$